

AC INTERNATIONAL

Inline Filter DFN/DFNF/LFN/LFNF to DIN 24550

up to 350 l/min, up to 400 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl. DFNF and LFNF filters are suitable for flow in both directions.

Standard equipment:

- without bypass valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724 ● ISO 3968
- ISO 11170
- ISO 16889 Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar Betamicron® (BH4HC): 210 bar Wire mesh (W/HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	100 bar : all LFN and LFN 210 bar : DFN 160, 400	F						
	400 bar : DFN 40, 63, 100	. 250						
	DFNF 40, 63, 100							
Fatigue strength	At nominal pressure 10 ₆ cycles							
	from 0 to nominal pressure							
Temperature range	-30 °C to +100 °C							
	(-30 °C to -10 °C = 200 bar - only D	FN/F)						
Material of filter head (and cover plate)	EN-GJS-400-15: DFN/F							
	Aluminium : LFN/F Steel							
Material of filter bowl (tube)	: DFN/F							
	Aluminium : LFN/F 40, 63							
	Steel : LFN/F 100							
Type of indicator	VM (Diff. pressure ind. up to 210 b	oar						
	oper. pressure - not for type LZ)							
	VD (Diff. pressure ind. up to 420 bar							
	oper. pressure)							
Pressure setting of the clogging indicator	5 bar (others on request)							
Bypass cracking pressure (optional)	7 bar (others on request)							

1.4 SEALS

NBR (=Perbunan)

1.5 INSTALLATION

Inline filter

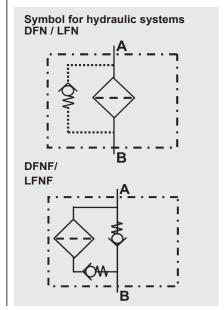
1.6 SPECIAL MODELS AND **ACCESSORIES**

- With bypass valve
- FPM seals

1.7 SPARE PARTS

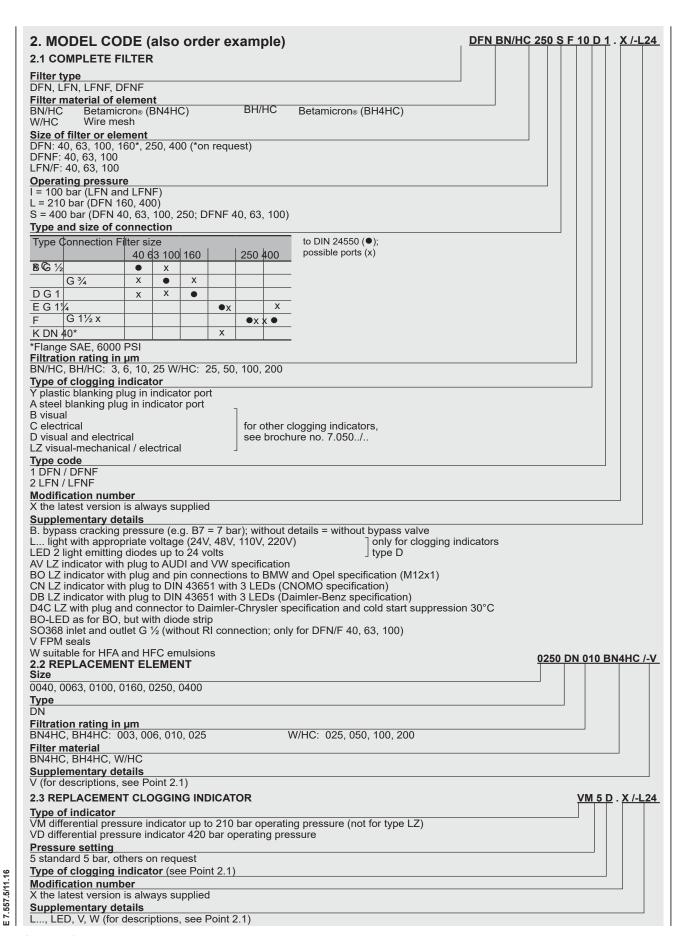
See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS


On request

1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request


1.10 IMPORTANT INFORMATION

- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

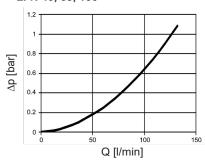
E 7.557.5/11.16

3. FILTER CALCULATION / SIZING

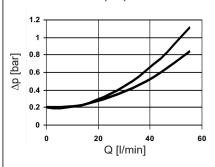
The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

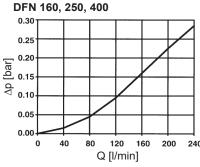
 Δ p_{total} = Δ p_{housing} + Δ p_{element} Δ p_{housing} = (see Point 3.1)

 $\Delta p_{\text{element}} = Q \cdot \underline{Sh50} \cdot \underline{\text{viscgaity}}$ (*see Point 3.2)


For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at <u>www.hydac.com</u>

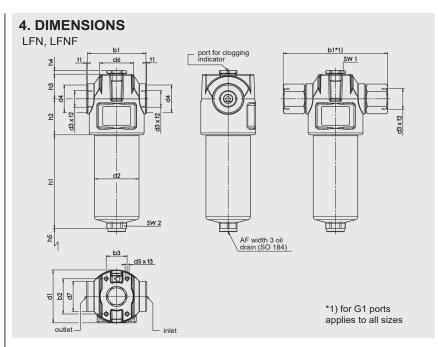

3.1 Δp -Q HOUSING CURVES BASED ON ISO 3968


The housing curves apply to mineral oil with a density of 0.86 kg/dm³ and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

DFN 40, 63, 100 LFN 40, 63, 100

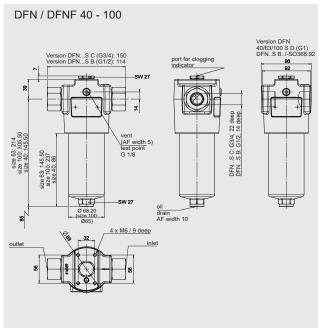
DFNF / LFNF 40, 63, 100

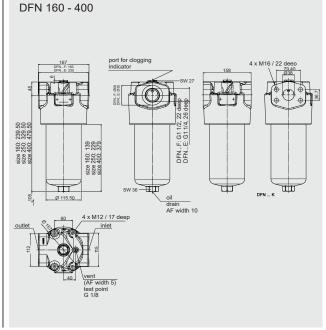
3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(l/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

LFN/F	BN4HC												
DFN/F	3 µm	6 μm	10 μm	25 μm									
40	40.4	24.8	16.4	10.9									
40 63	29.0	18.2	11.7	7.6									
100	19.0	11.7	7.7	5.3									
160	8.0	5.1	3.8	2.5									
250	5.4	3.4	2.8	1.9									
400	3.4	2.1	1.7	1.1									

LFN/F	ВН4НС	W/HC			
DFN/F	3 µm	6 µm	10 μm	25 µm	-
40	40.4	24.8	16.4	10.9	0.966
63	29.0	18.2	11.7	7.6	0.540
100	19.0	11.7	7.7	5.3	0.325
160	8.0	5.1	3.8	2.5	0.168
250	5.4	3.4	2.8	1.9	0.101
400	3.4	2.1	1.7	1.1	0.061


E 7.557.5/11.16



Туре	Weight incl. element [kg]	Volume of pressure chamber [l]
LFN 40	1.45	0.26
LFN 63	1.8	0.40
LFN 100	4.3	0.50
LFNF 40	1.45	0.26
LFNF 63	1.8	0.40
LFNF 100	4.3	0.50
DFN 40	5.0	0.22
DFN 63	6.0	0.33
DFN 100	6.25	0.50
DFN 160	20.0	1.10
DFN 250	22.0	1.70
DFN 400	26.5	2.70
DFNF 40	5.0	0.22
DFNF 63	6.0	0.33
DFNF 100	6.25	0.50

Type	b1	b2	b3	d1	d2	d3	d4 d	5	d6	d7	h1	h2	h3	h4 h	5	SW1	SW2	t1	t2	t3
LFN 40	90	56	32	84	68	G ½	34 M	6	52 48	В	90	57 39	9	6	75	27	27	1	14	9
LFN 63	90 56		32	84	68	G ¾	44 M	6	52	48	150	57	39	6	75	27 27		1	17	9
LFN 100	160*1)	56	32	84 6	5	G 1	-	M6	52	48 24	45.5	57	39	6	75	27	27	-	24.5	9
LFNF 40	90	56	32	84 6	3.2	G ½	34 M	6	52	48 9	D	57	39	6	75	27	27	1	14	9
LFNF 63	90	56	32	84 6	8.2	G ¾	44	M6	52	48	150	57	39	6	75	27	27	1 17		9
LFNF 100	160*1)	56	32	84 6	5	G 1	-	M6	52	48 24	45.5	57	39	6	75	27	27	-	24.5	9

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications or operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

4 | HYDAC